Improved Fruit Fly Optimization Algorithm-based Density Peak Clustering and Its Applications
نویسندگان
چکیده
Original scientific paper As density-based algorithm, Density Peak Clustering (DPC) algorithm has superiority of clustering by finding the density peaks. But the cut-off distance and clustering centres had to be set at random, which would influence clustering outcomes. Fruit flies find the best food by local searching and global searching. The food found was the parameter extreme value calculated by Fruit Fly Optimization Algorithm (FOA). Based on the rapid search and fast convergence superiorities of FOA, it is possible to make up the casualness of DPC. An improved fruit fly optimization-based density peak clustering algorithm was proposed as FOA-DPC. The FOA-DPC algorithm would be more efficient and effective than DPC algorithm. The results of seven simulation experiments in UCI data sets validated that the proposed algorithm did not only have better clustering performance, but also were closer to the true clustering numbers. Furthermore, FOA-DPC was applied to practical financial data analysis and the conclusion was also effective.
منابع مشابه
Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories
In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...
متن کاملAn improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications
This paper proposes a new support vector machine (SVM) optimization scheme based on an improved chaotic fly optimization algorithm (FOA) with a mutation strategy to simultaneously perform parameter setting turning for the SVM and feature selection. In the improved FOA, the chaotic particle initializes the fruit fly swarm location and replaces the expression of distance for the fruit fly to find...
متن کاملA Multi-Objective Approach to Fuzzy Clustering using ITLBO Algorithm
Data clustering is one of the most important areas of research in data mining and knowledge discovery. Recent research in this area has shown that the best clustering results can be achieved using multi-objective methods. In other words, assuming more than one criterion as objective functions for clustering data can measurably increase the quality of clustering. In this study, a model with two ...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کاملAn Improved SSPCO Optimization Algorithm for Solve of the Clustering Problem
Swarm Intelligence (SI) is an innovative artificial intelligence technique for solving complex optimization problems. Data clustering is the process of grouping data into a number of clusters. The goal of data clustering is to make the data in the same cluster share a high degree of similarity while being very dissimilar to data from other clusters. Clustering algorithms have been applied to a ...
متن کامل